On the extraction of instantaneous frequencies from ridges in time-frequency representations of signals

نویسندگان

  • Dmytro Iatsenko
  • Peter V. E. McClintock
  • Aneta Stefanovska
چکیده

The extraction of oscillatory components and their properties from different time-frequency representations, such as windowed Fourier transform and wavelet transform, is an important topic in signal processing. The first step in this procedure is to find an appropriate ridge curve: a sequence of amplitude peak positions (ridge points), corresponding to the component of interest. This is not a trivial issue, and the optimal method for extraction is still not settled or agreed. We discuss and develop procedures that can be used for this task and compare their performance on both simulated and real data. In particular, we propose a method which, in contrast to many other approaches, is highly adaptive so that it does not need any parameter adjustment for the signal to be analysed. Being based on dynamic path optimization and fixed point iteration, the method is very fast, and its superior accuracy is also demonstrated. In addition, we investigate the advantages and drawbacks that synchrosqueezing offers in relation to curve extraction. The codes used in this work are freely available for download.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تغییرات مؤلفه های فرکانسی و زمانی الکترورتینوگرام در بیماران مبتلا به رتینیت پیگمنتوزا در مقایسه با افراد سالم

Background and purpose: Retinitis Pigmentosa (RP) is one of the retinal degeneration diseases affecting the eye signals. Electroretinogram (ERG) is a signal that plays an important role in diagnosis and treatment of RP. This signal includes useful information that cannot be revealed just in time domain. We aimed to investigate the effect of RP on time, frequency, and time-frequency parameters o...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

A wavelet-based method for local phase extraction from a multi-frequency oscillatory signal.

One of the challenges in analyzing neuronal activity is to correlate discrete signal, such as action potentials with a signal having a continuous waveform such as oscillating local field potentials (LFPs). Studies in several systems have shown that some aspects of information coding involve characteristics that intertwine both signals. An action potential is a fast transitory phenomenon that oc...

متن کامل

Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2016